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Abstract The value of a diagnostic test lies in its
ability to detect patients with disease (its sensitivity)
and to exclude patients without disease (its specifici
ty). For tests with binary outcomes, these measures
are fixed. For tests with a continuous scale of values,
various cutoff points can be selected to adjust the
sensitivity and specificity of the test to conform with

W HEN a doctor orders a test, he has, on the basis of his
knowledge and experience, a certain impression of

its reliability. Does the test have many falsely positive or
negative results? Moreover, whatever the result, will the
Hndings playa determining part in shaping the doctor's
decision, or will they affect his diagnosis only in a minor
and complementary way? The answer to such questions
need not depend merely on impression. A number of
critical methods are available to evaluate diagnostic (or,
for that matter, therapeutic) procedures. In addition, crit
ical evaluation is necessary so that use of given diagnostic
procedures can be justified in these days of limited re
sources and spiralling costs for medical care.

This primer describes three methods to achieve such
critical evaluation. Though the methods go by names for
eign to most physicians, their basic principles are relative
ly simple. In essence, they consider the ability of a diagnos
tic procedure to detect patients with disease while simulta
neously excluding patients without disease. They also take
into account goals of the physician requesting the test 
for example, is he concerned primarily with health or
financial cost-benefit relations, or is he concerned only
with the amount of diagnostic information contained in
the test? The technical terms used for the three methods
to be described are the decision matrix, the receiver op- .
erating characteristic (ROC) curve and information
theory. Once a diagnostic procedure has been evaluated
by one of these technics, simple algebraic manipulations
can be performed so that the result of a test can be applied
to a particular patient; a formula called Bayes's theorem is

. used for this purpose.
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the physician's goals. Principles of statistical de
cIsion theory and information theory suggest
technics for objectively determining these cutoff
points, depending upon whether the physician is
concerned with health costs, with financial costs, or
with the information content of the test. (N Engl J
Med 293:211-215,1975)

DECISION MATRIX

By use of a decision matrix we can logically relate the re
sults of a diagnostic test to the clinical or pathologic out
come. This type of analysis is most easily applied to the
simple decision of whether disease is present, D +, or
absent, D -, when the test is abnormal (i.e., positive), T +,
or normal (i.e., negative), T -. When, as shown in Table I,
these two binary results are plotted on a two- X -two table
to show the four possible combinations (indicated by a, b, c
and d), a decision matrix is formed.

Each of the four combinations can be used to evaluate
the test by comparing its results to the actual presence or
absence of disease (i.e., four ratios may be formed). The
so-called true-positive (TP) ratio is the proportion of pos
itive tests in all patients who actually have the disease, or

_a_ . This value expresses probability (P) that patients
a+b
with the disease will have abnormal test results, and can be
written as the "conditional probability" P(T + ID+)* 
i.e., the probability that a patient with disease, D +, will
have a positive test, T + . The true-positive ratio expresses
the sensitivity of the examination. It measures the fraction
of patients with disease that will be detected by the diag
nostic test in question.

The false-positive (FP) ratio is the proportion of positive

tests in all patients who do not have disease, or _c_ . It
c+d

is the probability that patients without disease will have ab
normal test results, P(T + ID - ).

The true-negative (TN) ratio is the proportion of neg
ative tests in all patients who do not have the disease, or

~ . It is the probability that patients without disease
c+d

*A •• conditional probability" is written, as a matter of convention, with a
vertical bar before the given state or condition that is present or absent. It
does not imply division.
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PRESENT ABSENT

(0+) (0-)

Abnormal (T + ) a c
Normal (T-) b d

Totals a + b c + d

TEST

RESULTS

Table 1. A General Decision Matrix.

PRESENCE OF DISEASE

TOTALS

a + c
b+d

Table 2. Correlation of Liver Scan Data with Pathological Out
come.

SCAN LIVER DISEASE No DISEASE TOTALS

PRESENT (0-)
(0+)

Abnormal T+ 231 32 263
Normal T- 27 54 81

Totals 258 86 344

will have negative test results, P(T -ID-). This ratio ex
presses the specificity of the examination. It measures the
fraction of patients who will be correctly identified as hav
ingno disease. It is equal to (1 - FPratio).

The false-negative (FN) ratio is the proportion of neg-

ative tests in all patients with disease, or~ . It is the
a+b

probability that patients with disease will have negative
test results, P(T -ID+). It is equal to (1 - TP ratio).

Obviously, a good diagnostic examination has a high TP
ratio and a low FP ratio; it correctly identifies a large por
tion of diseased patients without incorrectly including pa
tients without disease. The ratio of the TP ratio to the FP
ratio is known as the likelihood ratio, L. Obviously, tests
with high likelihood ratios are better discriminators of dis
ease than those with low ones.

These test characteristics may be illustrated with a spe
cificexample. In a study on the use ofliver scans for detect
ing disease in 344 patients, the actual state of the liver was
determined either by biopsy or at autopsy. 1 When the ac
tual numbers as determined by the scans and by the mor
phologic examinations are put into the decision matrix,
the following table emerges (Table 2).

We may calculate the characteristics of the liver scan to
be as follows: .

tients with disease as normal versus classifying normal pa
tients as diseased. In screening for a potentially fatal dis
ease with a fairly safe treatment, for example, we would be
likely to accept a large proportion of false-positive diag
noses to ensure that our test discovers almost all diseased
patients -i.e., that it has high sensitivity. Patients with hy
pothyroidism fall into this category because of the high
morbidity associated with failing to diagnose and treat this
disease and the low morbidity associated with treating eu
thyroid patients with replacement therapy. For less seri
ous conditions or more dangerous treatments, on the oth
er hand, we are willing to miss more diseased patients to
reduce the number of false-positive diagnoses.

If we select a cutoff point that makes the test very sensi
tive to detect as many patients with actual disease as possi
ble, the number of false-positive diagnoses unavoidably
increases; in other words, the more sensitive the examina
tion, the less specific it becomes. To help us determine the
most advantageous cutoff point, we first construct a graph
plotting true-positive (TP) ratios (i.e., the expression of
sensitivity) against false-positive (FP) ratios. The resulting
plot, which takes the shape of a smooth, concave curve, is
know as an "ROC curve" (receiver-operating-characteris
tic curve).

A hypothetical ROC curve was constructed (Fig. 1) with
the assumption tnat a laboratory examination has a range

True-positiveratio =P(T+ 10+)=~ =0.90.
231 + 27

False-positive ratio =P(T+ 10-) =_3_2_ =0.37.
32 +54

True-negative ratio =P(T-ID-) =_54__ =0.63 =(1-0.37).
54+ 32

False-negativeratio =P(T-IO+) =_2_7_ =0.10 =(1-0.90).
27 + 231

Thus, the liver scan is 90 per cent sensitive and 63 per
cent specific. It will detect 90 per cent of patients with liver
disease and will correctly classify 63 per cent of those
without disease.

THE ROC CURVE
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Figure 1. Hypothetical ROC Curve
The vertical scale is the TP ratio, and the horizontal scale the
FP ratio. At one extreme point, A, the test has poor sensitivity
(TP ratio = 0.30) but good specificity (FP ratio = 0.07). At the
other extreme, E, the test has high sensitivity (TP ratio = 1)

but poor specificity (FP ratio = 0.70).

General Characteristics
Few tests have simple binary outcomes and thus cannot

be classified as just positive or negative. Instead, most
yield a continuous scale of values, of which one of several
can be selected as a cutoff point to differentiate subjects
with and without disease. The cutoff point chosen de
pends on the relative costs associated with classifying pa-
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For example, on the average, if the cost of missing a
diagnosis is high and the cost of mistakenly treating pa
tients is low, intuition tells us to operate at a point near E
on the ROC curve (Fig. I) where we treat all patients with
disease. The formula supports this estimate because un
der these conditions, the ratio AC fp lAC fn is small, and
the slope of the curve changes only slightly near E. On the
other hand, if the therapeutic results of treating a disease
are of marginal value, and the health costs of treating a
patient without disease are high, intuition tells us to oper-

0.00
0.02
0.10
0.25
0.70

PATIENTS WITHOUT DISEASE
(FALSE-POSITIVE RATIO)

PROPORTION OF PATIENTS HAVING

ABNORMAL TEST RESULTS

0.30
0.45
0.70
0.90
1.00

PATIENTS WITH DISEASE
(TRUE-POSITIVE RATIO)

A
B
C
D
E

CUTOFF POINT

Selection of a Cutoff Point

Selection of an appropriate cutoff point is aided by
knowledge of the probability of disease in the patient pop
ulation of interest. This probability of disease in any given
member of the group as a whole is called the prior or pre
test (that is, before the results of the test in the given mem
ber are obtained) probability and may be designated as
P(D+). The prior or pretest probability of no disease may
be designated as P(D-). For illustrative purposes in sub
sequent examples, we shall assume that the hypothetical
test described in Table 3 was performed on a group of pa
tients of whom 30 per cent have disease {P(D+) = 0.30}
and 70 per cent do not {P(D- ) = 0.70}.*

Selection of an appropriate cutoff point is also aided by
knowledge of the costs associated with errors in diagnosis
- both false-positive and false-negative errors. We are
generally interested in the additional costs associated with
these errors in comparison with the costs associated with
an ideal or perfect test. Costs can be divided into those that
pertain to health and those that pertain to money.

Table 3. Correlation of Cutoff Point and True-Positive and
False-Positive Ratios for a Hypothetical ROC Curve.

I:~:a:~~:~::Yon, of whkh,= b, u:~t~,::a~a:::fJOU:~:F,:::::,e of ~o majo' iodem, ~t~:::
from diseased patients (Table 3). The proportion of sub- and morbidity, and are usually the basis of decisions in-
jects classified as normal or abnormal on the basis of this volving patient management. Varying mortality patterns
test then depends upon where this cutoff point is placed. are most conveniently evaluated by computing and com-
When test results larger than those corresponding to the paring, for various diagnostic tests and therapeutic regi-
value at point A are considered abnormal, only 30 per cent mens, an index called "person-years"; a person-year is de-

i of the diseased patients are detected, but there are no fined as one person surviving for one year. t Person-years

\

•. false-positive diagnoses. At this cutoff point the test has do not take into account the morbidity, pain and anxiety
great specificity but very poor sensitivity. When test re- associated with the diagnostic tests and therapeutic regi-

....... suits greater than those corresponding to the value at mens. It is possible, therefore, that the morbidity associat-
• point C are considered abnormal, 70 per cent of patients ed with the best treatment regimen (measured in terms of

with disease are detected, but 10 per cent of subjects person-years)wouldbesufficientlyhighsothatagivenpa-
without disease have abnormal results. When a low cutoff tient would prefer a less effective regimen. Ideally, physi-
value (point E) is used to separate those with disease from cians should take patients' preferences regarding mortali-
those without, all patients with disease are identified, but ty and morbidity into account when making decisions in
at the expense of including a large proportion of patients their behalf. Some weighting of mortality and morbidity
(70 per cent) without disease. The location of a cutoff should probably be performed, and the resulting index
point along an ROC curve is called an "operating posi- called "healthy person-years of life" rather than person-
tion." years oflife alone.

Financial costs have two major components. There are
the medical bills themselves, paid by the patient or some
third party. In addition, since death or disability may pre
vent patients from supporting themselves or others, there
may be additional costs to society and insurers for support
of patients or their dependents. Even if these support costs
cannot be exactly determined, it is clear that use of medical
bills alone to determine the cost of diagnosis and treat
ment underestimates the total financial costs.

When health costs are most important and are used to
select a cutoff point between normal and abnormal re
sults, we want to minimize differences in person-years (or,
ideally, healthy person-years) between our diagnosis and
treatment and that existing for perfect diagnosis and op
timal treatment. If we let the additional cost in person
years associated with a false negative diagnosis be AC fn

and with a false-positive diagnosis be AC fp we can deter
mine from statistical decision theory* that the optimal op
erating position on the ROC curve occurs where the slope
of the ROC curve equals

AC fp P(D-)

AC fn P(D+)

*The ratio of the probability of disease to the probability of no disease,
P(D+) , is known as the prior odds and is usually designated by the Greek
I'(D-)
letter omega, O. In this example the prior odds are 3:7. The prior probability
of disease can be calculated from the prior odds by the following relation':

I'(D+) =~.
1+0.

'This definition implies that one year of life for two individuals is the same
as two years of life for one person and that all years of life are valued
equally.

'Derivation of expression (1) can be found in Signal Detection and Recogni
tion by Human Observers, edited by John A. Swets, New, York, John Wiley
and Sons, 1964. It is based on considerations related to expected value. Ex
pected value is defined here as the sum, considering all potential outcomes
of a decision, of the products of the probabilities of outcome, and the value
attached to each outcome.
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ate at a posItion near point A where the slope, like
AC lp fAC ln , is steep. Finally, if the likelihood of disease in
the patient is very small (that is, the ratio of the probability
of no disease to disease is large), we again choose a point
near A; this situation occurs in screening programs.

When financial costs are our criterion for selection of a
cutoff point, the same principles apply except that now the
additional costs relate to money. AC fp , for example, is the
extra cost associated with unnecessary diagnostic and per
haps therapeutic regimens, whereas AC In is the addition
al cost caused by the progression of untreated disease.

In many cases we do not have accurate estimates of the
additional health or financial costs associated with errors
in diagnosis. One approach to this problem is to choose a
cutoff point that minimizes our mistakes. This position
may be designated by M min and occurs where the slope of
the ROC curve equals P(D- )fP(D+). For example, for
the population where P(D-) = 0.70 and P(D +) = 0.30
the position occurs where the slope equals

P(D-) = 0.70 = 2.33.
P(D+) 0.30

This position is near point C of the ROC curve in Figure 1.
It is important to emphasize that the cutoff point chosen

is best only for the measure of costs selected. Thus, if costs
are based on mortality, the resulting operating position
should" yield the lowest average mortality. If costs are
based on finances, the lowest average financial cost results.
This resulting cutoff point need not be the same as that as
sociated with the lowest average mortality. In addition,
the cutoff point that minimizes mistakes may differ from
both these points.

In evaluating various therapeutic or diagnostic pro
cedures, these health and financial costs are initially esti
mated independently. To relate diagnostic or treatment
(health) costs to financial costs we may calculate an average
financial cost required to achieve a given unit of health
(e.g., person-years) for each procedure; this is an average
cost. In comparing various therapeutic or diagnostic pro
cedures, a cost called a marginal cost may be calculated.
This cost is the financial cost of achieving one additional
unit of health (e.g., one more person-year) by one proce
dure over another. For example, if one treatment costing
$15,000 yields five person-years of life and another cost
ing $8,000 yields three person-years of health, the mar
ginal cost of each additional person-year resulting from
the first treatment is $3,500 {(l5,000-8,000)f(5-3)}. For
diagnostic procedures the same principles apply except
that now the average cost relates to finding a patient with
disease and the marginal cost relates to finding an addi
tional patient with disease using one diagnostic procedure
as compared with another. Such diagnostic procedures
can be either different tests or different cutoff points ap
plied to the results of a single test.

INFORMATION THEORY

General Characteristics

Information theory has been used as one of several pos
~ible means for selecting a cutoff point along the ROC

curve.2 In this context, information is defined as a reduc
tion in uncertainty; thus, the greater the difference be
tween the certainty of a diagnosis after a test is performed
and the certainty before it is performed, the greater the in
formation content of test. Accordingly, if the certainty
about a given diagnosis is already high, little information
is gained from an additional diagnostic test. For example,
results of a serum ceruloplasmin level in a patient with
Kayser-Fleischer rings and ataxia provide less informa
tion than results of a similar test in a brother of a child with
Wilson's disease. In the former instance we are fairly cer
tain of the diagnosis on the basis of physical findings 
that is, our pretest probability estimate is already close
to 1.0. In the latter instance, on the other hand, we are
less certain; our pretest probability is lower, around 0.25,
and we therefore gain much more information from a se
rum ceruloplasmin measurement. Obviously, if we think
that one disease is as likely to be present as not, our pretest
probability is 0.50; in this case, we gain information from a
test that will help us go from a completely uncertain 50:50
state to one of greater certainty.

Selection of a Cutoff Point

A theoretical relation exists between the maximum in
formation content obtainable from a perfect test (TP ra
tio = 1, FP ratio = 0) and the frequency of the disease in
question; this relation is described by a smooth curve hav
ing a continuous range of values (Fig. 2). Because most
tests are not perfect, however, the theoretical maximum
value is seldom achieved. The actual value depends upon
the TP and FP ratios. Tests that have a continuous scale of
values and thus a number of possible discrete cutoff points
have different amounts of information associated with
each cutoff point as well as with each prior probability. For
example, we can calculate* the information content for
each of the cutoff points on the ROC curve presented
in Figure I, and to show that for prior probabilities of 0.25,
0.50 and 0.75, the information content at point D is higher
than that for points A, B, C and E. The cutoff point of a
diagnostic test having a value closest to the theoretical
one is the one that maximizes the information content of
the test. This point is said to have an information content
of I max

BAYES'S THEOREM

Once a diagnostic test has been evaluated so that its
characteristics (i.e., sensitivity and specificity) are known,
it is possible to formulate new probability statements
about the presence or absence of disease in a particular pa
tient examined by the diagnostic test. These probability
statements are called posterior or post-test probabilities
because they reflect the test results. If a patient has an ab
normal test result the probability of disease is written as
P(D+ IT +)and if he has a normal test result, it is written as

'We calculated these results by evaluating a complex algebraic ex
pression derived and discussed in detail by Metz. 2 This expression makes
use of the TP and FP ratios of the test (or, in our case, of the ratios cor
responding to varying cutoff points) and of the prior probability with which
weare concerned.

I

I
I
I·
I
I
I
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Alternatively, if we wish to know the probability that a pa
tient with a normal test result has disease, we need to know
the TN and FN ratios as well as P(D + ) and P(D - ). The
relevant formula is:

P(D+IT-) = P(T-ID+) P(D+) (3).
P(T-ID+)P(D+) + P(T-ID-)P(D-)

Figure 2. Information Content of a Test as a Function of the
Prior Probability of Disease.

The maximum information content theoretically obtainable
occurs with a perfect test (TP ratio = 1, and FP ratio = 0); its
maximum value is 1.0 and occurs where the prior probability
is 0.5 (solid line). The circles represent the maximum informa
tion content (hnax) for the hypothetical ROC curive (Fig. 1) at
three prior probabilities; these three values of Imax are asso-

ciated with point D on the ROC curve.

*The Reverend Thomas Bayes (1702-1761) was the author of the first
treatise on one type of inductive inference. He is believed to be responsible
for the following statement written in 1736: "It is not the business of a
Mathematician to show that a strait line or circle can be drawn, but he tells
you what he means by these; and if you understand him, you may proceed
further with him; and it would not be to the purpose to object that there is no
such thing in nature as a true strait line or perfect circle, for this is none of his
concern; he is not inquiring how things are in matter of fact, but supposing
things to be ina certain way, what are the consequences to be deduced from
them; and all that is to be demanded of him is, that his suppositions be intelli
gible, and his inferences just from the suppositions he makes."
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= 0.61.

= 0.05.P(D+IT-) = (0.10) (0.30)
(0.10)(0.30) + (0.75)(0.70)

A negative test has reduced the probability of disease from
0.30 to 0.05, a factor of six. In this context, the test is more
useful in ruling out disease than in detecting it.

The difference between posterior and prior proba
bilities is strongly dependent upon the true-positive and
false-positive ratios for the diagnostic test. A nomogram
relating both prior and posterior probabilities to these
ratios has been constructed for a wide range of test
sensitivities. 3 For tests that are "perfectly sensitive" (TP
ratio = 1.0), a family of curves relating prior to posterior
probability can be constructed for varying false-positive
ratios. 4

The elementary principles enumerated in this prim
er have been discussed in more detail by Lusted5 and
by Barnoon and Wolfe. 6 These authors point out that
these principles can be applied to a wide range of clinical
problems from clinical decisions involving individual
patients to matters of public-health policy. Several articles
in this issue are devoted to examples of these types of anal
yses.

As a specific example illustrating these formulas consider
the hypothetical test (Table 3, Fig. 1) performed on a
group of patients 30 per cent of whom are estimated to
have disease. Let us assume that we have used point D as
our cutoff point. The probability of disease in a patient
with an abnormal test is calculated from equation (2) and is
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PRIOR PROBABILITY

0.25o

P(D+ IT - ). Bayes's* theorem is a technic that allows us to
calculate these posterior probabilities that we wish to
know from information that we already know beforehand
("a priori") about the implications of a diagnostic test. For
example, if we wish to estimate the probability of disease in
a patient with an abnormal test result we must know the
probabilities that the diagnostic test will be positive in pa
tients with and without disease - the TP and FP ratios 
and an estimate of the prior probabilities, P(D +) and
P(D-). Thefollowing formula is used:

P(D+IT+) = P(T+ID+) P(D+)
P(T+ID+)P(D+) + P(T+ID-)P(D-)
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